Powder & Bulk Solids is part of the Informa Markets Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Smoke Detection for Extremely Dusty Settings

Image courtesy of Honeywell Aspirating_Smoke_Detection_System_HONEYWELL.jpg
Honeywell VESDA-E VEU with 3.5 LED
Early smoke detection is often critical to quickly suppress fires

For buyers and sellers in the processing, handling, and packaging of dry particulates, early smoke detection is often critical to quickly suppress fires. In some manufacturing facility settings, voluminous dust and particulates from products and processes can be confused with smoke by most conventional, passive smoke detection systems, triggering ongoing alarms. Resolving these alarms often requires excessive troubleshooting and maintenance to keep the system functional. When this is the case, the nuisance alarms may compromise safety.

While many manufacturing facilities deal with some level of dust, the inside of a dust collection system robustly demonstrates the necessity for advanced detection systems that accurately distinguish dust from smoke. Aspirating smoke detection (ASD) technology can be an effective option, even within this dustiest of environments.

This article will discuss the benefits of ASD technology, as well as an example of its successful implementation with Khaleel Rehman, director of development – Americas for Honeywell’s advanced detection fire team. Honeywell International Inc. is a global innovator whose advanced manufacturing businesses cover safety, security, and energy needs.

Q:  Briefly, how can ASD technology benefit powder & bulk solids industry professionals? Can you describe how it works and how it can be customized?

A: Advanced ASD systems can significantly reduce false alarms and maintenance, while increasing safety by detecting smoke at the earliest possible stage via numerous sampling points. The process draws in air through durable piping and analyzes it using sophisticated laser-based technology, imaging, and photodiodes technology. Continuous air sampling drawn from the protected area through the pipe network to the sensing unit provides the fastest possible smoke detection rates. In doing so, the system effectively distinguishes between actual smoke and dust or particulates to all but eliminate nuisance alarms. This core technology has been used for decades in sensitive applications such as cleanrooms and data centers where early smoke detection is critical.

Although these systems are quite flexible, many facilities use different processes and materials in varying volumes with unique facility layouts. It is important to consider engaging a partner that can design the system to fit a facility’s specific needs.

Q:  Would you give an example of how ASD technology has been successfully implemented in a difficult application?

A: An example where extreme dust presented a difficult smoke detection and maintenance challenge is in a manufacturing process at an aluminum tubing provider. In this situation, a fine hot zinc powder is spray coated onto tubing in a spray booth area. The excess powder is then directed to a dust collection system consisting of large-diameter ducting and paper-based filter media before clean air is vented outdoors.

The zinc dust accumulates quickly and abundantly inside the ducting and can easily overwhelm the filters. This required excessive inspection and frequent maintenance to keep the system fully operational. Flagship Fire Inc. of Palmetto, FL was hired to improve the system’s fire safety. Flagship Fire provides special hazards fire suppression, control, and detection solutions for unique, high-value industrial assets.

The management team at Flagship Fire reported that when technicians would do routine maintenance every few months on sections of ducting, they would bang the sections with a rubber mallet to remove several inches of zinc dust that accumulated inside of this duct work.

The dust-laden, paper-based filter media would also periodically catch fire when ignited by a stray spark. The plant tasked Flagship Fire to improve smoke detection and fire safety within the dust collection system.

Even though the deflagration index of the dust is low enough that providing explosion protection is not required, the plant sought greater safety with early smoke detection and fire suppression inside the dust collection system.

As a solution, Flagship Fire specified an ASD system called VESDA-E VEU by Honeywell. The ASD system draws air samples in a continuous process through holes in durable industrial pipe mounted along the walls and ceiling. The VESDA-E VEU analyzes the air in a flair detection chamber that uses a short wavelength laser, a CMOS imager, and multiple photodiodes that can distinguish between smoke and dust, minimizing false alarms. The system is cross zoned with thermal detectors inside the dust collection filter area.

With this arrangement, plant operators can manually discharge the high-pressure, CO2 fire suppression agent as needed, or if an incident occurred after hours and no one was present, the plant’s VESDA system, cross zoned with a thermal device, will automatically discharge to suppress the fire.

Q: Were any adjustments required for the specific application? If so, how was this implemented?

A: Some minor adjustments were required to increase system reliability. Since the ASD system draws in air, it does not require direct airflow into the analyzer. In fact, too much airflow could affect the results, so Flagship Fire angled the VESDA air sampling points away from the most voluminous air flow sources.

Flagship Fire also specified Schedule-40 galvanized VESDA pipe in the ductwork near the hot zinc spray coating area to withstand the heat to address the site’s needs.

Image courtesy of HoneywellDuctwork_HONEYWELL.jpg

Honeywell VESDA-E VEU is utilized on dirty air ductwork.

Q: What are the results of implementation?

A: Flagship Fire has reported that the VESDA smoke detection system has performed well since the installation, in conjunction with the thermal device and automatic CO2 fire suppression system. This arrangement has not only minimized false alarms caused by particulates in the dust collection system, but also helped improved plant safety by enabling smoke detection at the earliest possible stages of a fire.

For more information, contact Megan McGovern, director of external communications at Honeywell Building Technologies at [email protected] or 404-216-6186, or call Khaleel Rehman at 917-239-3443.

Hide comments
account-default-image

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish